Stimulus Size Dependence of Information Transfer from Retina to Thalamus
نویسندگان
چکیده
Relay cells in the mammalian lateral geniculate nucleus (LGN) are driven primarily by single retinal ganglion cells (RGCs). However, an LGN cell responds typically to less than half of the spikes it receives from the RGC that drives it, and without retinal drive the LGN is silent (Kaplan and Shapley, 1984). Recent studies, which used stimuli restricted to the receptive field (RF) center, show that despite the great loss of spikes, more than half of the information carried by the RGC discharge is typically preserved in the LGN discharge (Sincich et al., 2009), suggesting that the retinal spikes that are deleted by the LGN carry less information than those that are transmitted to the cortex. To determine how LGN relay neurons decide which retinal spikes to respond to, we recorded extracellularly from the cat LGN relay cell spikes together with the slow synaptic ('S') potentials that signal the firing of retinal spikes. We investigated the influence of the inhibitory surround of the LGN RF by stimulating the eyes with spots of various sizes, the largest of which covered the center and surround of the LGN relay cell's RF. We found that for stimuli that activated mostly the RF center, each LGN spike delivered more information than the retinal spike, but this difference was reduced as stimulus size increased to cover the RF surround. To evaluate the optimality of the LGN editing of retinal spikes, we created artificial spike trains from the retinal ones by various deletion schemes. We found that single LGN cells transmitted less information than an optimal detector could.
منابع مشابه
Decision Support System for Age-Related Macular Degeneration Using Convolutional Neural Networks
Introduction: Age-related macular degeneration (AMD) is one of the major causes of visual loss among the elderly. It causes degeneration of cells in the macula. Early diagnosis can be helpful in preventing blindness. Drusen are the initial symptoms of AMD. Since drusen have a wide variety, locating them in screening images is difficult and time-consuming. An automated digital fundus photography...
متن کاملInternet Dependence and Sensation Seeking in Youth With Moderate Cerebral Palsy
Objectives: The present study examined excessive internet use of youths with moderate Cerebral Palsy (CP) and their psychological states in Sensation Seeking (SS). Methods: This study followed descriptive and correlation research design. Individuals aged 15 to 25 years with CP who were referred to Tehran rehabilitation centers were considered in the study. The study sample (n=150) was ra...
متن کاملPreserving information in neural transmission.
Along most neural pathways, the spike trains transmitted from one neuron to the next are altered. In the process, neurons can either achieve a more efficient stimulus representation, or extract some biologically important stimulus parameter, or succeed at both. We recorded the inputs from single retinal ganglion cells and the outputs from connected lateral geniculate neurons in the macaque to e...
متن کاملRepresentation of time interval entrained by periodic stimuli in the visual thalamus of pigeons
Animals use the temporal information from previously experienced periodic events to instruct their future behaviors. The retina and cortex are involved in such behavior, but it remains largely unknown how the thalamus, transferring visual information from the retina to the cortex, processes the periodic temporal patterns. Here we report that the luminance cells in the nucleus dorsolateralis ant...
متن کاملThe human Retinal Functional Unit.
It has long been known that readers of this page will move their eyes from one fixation to the next two to four times per second. It follows from this fact that each fixation triggers a unique optic nerve volley lasting up to 300 ms that contains all the information the retina processes between fixations. Here we give such volleys a name (Retinal Functional Unit, RFU) and use human subjects and...
متن کامل